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Getting to the Bottom

I Lattice discretization effects are significant at large quark
masses as some cutoff effects go as am.

I The JLQCD collaboration has recently produced very fine
Domain Wall(DW) Lattices a = 0.080 to 0.044fm

I Can the discretization effects for DW be understood and
accounted for at large quark masses

I How far can we push the limits and hopefully extrapolate to the
bottom
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Project Overview

I Nf = 2 + 1 simulations on 15 Esnambles with 10, 000 MD times
for each.

I Simulations at three lattice spacing a−1 ≈ 2.4, 3.6 and 4.5GeV

I Pion masses from 230 MeV to 500 MeV

I Domain-Wall (Möbius) fermions
I Good chiral symmetry with mres � mud. mres ≈ 1MeV on our

coarsest lattice; ≈ 0 on the finer lattices.
I Small residual mass is achieved by the Möbius representation

and using stout link-smearing
I Simpler Renormalization ZV = ZA

I Topological charge not fixed

I Fine lattices for heavy quarks: How well controlled are the
discretization effects?
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JLQCD Lattices

Lattice Spacing L3 × T L5 amud ams mπ [MeV] mπL
β = 4.17, a = 0.080fm 323 × 64 12 0.0035 0.040 230 3.0
a−1 = 2.453(4) GeV 0.0070 0.030 310 4.0

0.0070 0.040 310 4.0
0.0120 0.030 400 5.2
0.0120 0.040 400 5.2
0.0190 0.030 500 6.5
0.0190 0.040 500 6.5

483 × 96 12 0.0035 0.040 230 4.4
β = 4.35, a = 0.055fm 483 × 96 8 0.0042 0.018 300 3.9
a−1 = 3.610(9) GeV 0.0042 0.025 300 3.9

0.0080 0.018 410 5.4
0.0080 0.025 410 5.4
0.0120 0.018 500 6.6
0.0120 0.025 500 6.6

β = 4.47, a = 0.044fm 643 × 128 8 0.0030 0.015 280 4.0
a−1 = 4.496(9) GeV
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Measurements

I Correlators measured on each lattice for both smeared and
unsmeared Z2 sources

I Axial and pseudoscalar current correlators were produced on
100 configurations with 6− 8 source points each.

I Sources and sinks were smeared with Gaussian smearing

I Masses and amplitudes were computed with a combined fit to
the axial and pseudoscalar correlators with a combination of
smeared and unsmeared sources and sinks.

I Chiral fermions means ZV = ZA where ZV was computed
using short distance space-like correlators
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D and Ds decay constant
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I Similar results were
presented recently at the
last lattice conference

I The lattice spacing
dependence is small with
cutoff effects of our
coarsest lattice of only
about 1%

I fD = 212.1± 5.2 MeV and
fDs

= 245.5± 2.8 MeV.
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I Since cutoff effects at the charm are reasonably controlled,
how far above the charm mass can we go?

I Bare quark masses chosen mi = (1.25)imc:

I All heavy quarks treated with DW

Beta m0 = mc m1 m2 m3 m4 m5

4.17 0.4404 0.5505 0.6881 0.8600
4.35 0.2729 0.3411 0.4264 0.5330 0.6661 0.8327
4.45 0.2105 0.2631 0.3289 0.4111 0.5139 0.6423
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Heavy-light and heavy-strange results
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Heavy-light and heavy-strange results
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Corrections motivated by HQET

I Lattice discritization errors become large when am is large

I We would like to understand what goes wrong in the large
mass limit

I Follow the ideas of Lepage and assume small momentum and
expand the action

I Use these to determine the low order corrections to the wave
function normalization and energies E = m1 + p2

2m2
+ . . .
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Wave function renormalization

I In the Continuum

S(p) =
1

/p+m
→ C(t, ~p = 0) =

∫
dp0
2π

S(p)eip0t =
1 + γ0

2
e−mt

I On the lattice

S(p) = Complicated → C(t, ~p = 0) = AKLM
1 + γ0

2
e−m1t

This correction to the
normalization known as the
Kronfeld-Lepage-Mackenzie
factor
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Renormalized
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Mass Corrections
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Checking the KLM factor

I We checked the KLM factor by numerically integrated the
propagator for particular heavy quark masses of interest and
compared to the KLM factor.

I This reverse engineering of the KLM factor agreed at large time
separations but for large quark masses they disagreed
significantly.

I We suspect this may be due to the DW fermions non locality
being significant at very large quark masses.

I Compute corrected correlators by dividing the correlators by
the integrated lattice propagator and multiply by the continuum
result.
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Corrected Correlators
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Fit to the Corrected Values
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Conclusions and Future work

I Results of heavy mesons seem promising and the cutoff effects
for heavy domain wall fermions can be partially understood

I Corrections motivated by Heavy Quark Effective theory seems
to account for most of the problems as we approach masses of
1/a

I Extrapolation to the B might not be completely unreasonable

I Better understanding of the correlator normalization and
possible effects of non local fermions still need to be worked out

I Determine more appropriate fit functions to extrapolate to the B

I Try the “ratio method” using ratios of successive heavy masses
to constrain the extrapolation
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Thank You.
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Backup Slides
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Topological charge

Topological charge for a−1 = 2.4 GeV (top) and a−1 = 3.6 GeV
(bottom)
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Corrections

m1 = log

(
1−W0 +

√
(1−W0)

2 − 1

)
m2 =

√
W 2

0 − 2W0

(
Q+ 1− 2W0

(Q+ 1) + (Q− 1)(2W02 +W0)

)

ADWKLM =
2

(1−m2)
[
1 +

√
Q

1+4W0

]

Q =

(
1 +m2

1−m2

)2

and W0 =
1 +Q

2
−
√

3Q+Q2

2
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